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I. INTRODUCTION

It has been thought for many years that amorphous selenium, by analogy

to sulfur , is a molecular solid mixture of eight member rings and polymeric

chains. Briegleib1 and others2’3 supported this hypothesis by demonstrating

that, like sulfur, one fraction of amorphous selenium (a—Se) is much more

soluble in cold CS
2 than another; presumably these correspond to the ring

and chain fractions, respectively.4 They found that, also like sulfur, the

relative size of the two fractions can be manipulated by changing the tempera—

ture from which the melt is quenched. The different molecular structures

produced by quenching from different temperatures have shown up in resistivity

measurements
2 
and in viscosity measurements both above5 and below

6 
T
gs and in

T
g~ 

the modulus, and density,6 but the variations were rather small,7 and no

one has tried to measure the relative stability of these different structures.

The objective of this work was to produce selenium in non—equilibrium states

whose composition could be probed by the manner in which they relaxed toward

equilibrium. Samples were produced by vacuum evaporation. It was expected

that this procedure would skew the molecular structure toward smaller chains

and more rings, and that the skewing would be much larger than can be achieved

through melt—quenching.
8 

Thus, the effects of molecular structure should be

considerably larger than in earlier experiments — in fact , large enough to

measure the kinetics of structural equilibration . Toward that end, we meas—

ured the viscosity and heat capacity of these samples as a function of tempera—

ture, and also their far infrared (FIR) transmission spectra .

II. EXPERIMENTAL DETAILS -

*

The samples were produced from 5—9 ’s pure Se pellets.9 The pellets were

premelted and outgassed in vacuum (typically 8xlO minllg), and then evaporated 

-~ .-
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onto a temperature controlled substrate — a NaC~ coated glass slide. The

samples were %lOOUm thick and produced in 20 m m .  They were floated off the

glass in water.

For viscosity measurements , the substrate was held at 20°C, and masked

to produce a specimen as shown in Fig. la. This was clamped into one arm of

a balance beam (Fig. ib), 40 grams were hung from the other arm , and the

resulting creep was monitored by a linear voltage displacement transformer

(LVDT) 1° which surrounded an iron core built into the wei ghted arm of the

balance. The narrow part of the sample was surrounded by a slot in a termpera—

ture controlled aluminum block. Thermal contact was maintained by f illing the

slot with oil. The apparatus was operated in a temperature controlled box

set at ~4° C to eliminate expansion or contraction of the various components

of the balance beam , and also to eliminate contributions to the creep by the

end tabs of the sample. The instrument was calibrated by shifting the LVDT

a measured distance with a calibrated screw. This screw was also connected

to a low speed motor which period ically lowered the transformer to prevent

the recorder pen from going off scale.

The f i lm cross sec tions wer e ~2~ 1O
3cm2, so tha t we were imposing a

stress of ~ l0 I
dynes/cm

2
. According to the  previous work by ,Tenckel ,11 this

is well within the limits of stress for Newtonian flow .

H The heat capacities were measured in a Perkin—Elmer Differential Scanning

Calorimeter (DSC—Il). The samples for this were prepared as described in the

f i r s t par agr~tp h of this section except that no evaporation mask was used in

this case. The substrate was held at temperatures from 14°C (cooling water)

to —196°C (liquid nitrogen). The samples were floated off the substrate In

ice water. Then they were dried , broken up ,  sealed inside aluminum plan—

che ttes , and stored on dry ice until they were used .

L ~~~~~~~~~~~~~~ — . - — ~~~~~~~~~~~~ - -
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The infrared spectra were obti incd from a Digilab Fourier transform

spect rometer at MIT. In this case , the films had to be evaporated through a

screen so that the surface would be uneven enough to average out interference

effects. The screen was made of parallel 1 mu wires spaced by ~J- mit, and it

was moved twice during evaporation to randomize the surface fluctuations. In

order to preserve the evaporated structure, the substrate was kept at —57°C

(using a mixture of dry ice and acetone), and the samples then handled as for

the calorimeter. The spectra were taken in times much shorter than those needed

for measurable structural relaxation.

III. VISCOSITY RESULTS

The procedure for making the measurements was as follows: The creep rate

was monitored at constant temperature until steady state was achieved. Then

the temperature was changed very quickly (compared to the equilibration rate)

to a new temperature, held there, and the creep rate was monitored until a new

steady state creep was reached. The sample was under a constant stress at all

times.

With this procedure, four independent parameters can be obtained: 1) the

equilibrium viscosity as a function of temperature; 2) the isostructural viscosity

activation energy; 3) the relaxation rate; 4) the analytical form of the

relaxation.

The equilibrium viscosity is shown in Fig. 2. The solid line is a fit

to the previous data on melt—quenched samples; Jenckel,’1 who did creep measure—

meats, and Cukierman and Uhlmann,’2 who did beam bending measurements. Note

that in the region of overlap, the data are virtually identical. It is clear

from our additional low temperature data that the analytical form of the tempera—

ture dependence of the viscosity is very different from that used by Cukierman and

Uhlmann in the higher temperature range. Instead of the WLF type curve, which

L .:~~~~~ :i . - 
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has a slope which inc reases wi th  decreasing tempe rature  [r1~exp af(T—T )], and

which f i t s  the data  well for  T - 3 5 ° C; the data for  T<35° C has the form of a

simple exponential  w i t h  a slope of 127.9 kcal/mole  and a p r e f a c t o r  of —182.6.

This change to Arrhenius  behavior is similar to the behavior  exhibi ted  by B 2
0

3

in the same viscosity regionJ3

The second parameter  [ have called th e isostructural viscosity activation ‘ 

-

energy . in the f ree  volume model , the isostructural viscosity is equivalent

to the volume viscosity and is i measure of the ease with which the free volume

can be re—equilibrated after a rapid temperature  change . It  is obtained by noting

the change in viscosity of the sample after a very rap id change in temperature ,

and so one is measuring the tempe rature dependence of the viscosity of a fixed

structure (that is t h c  structure w:~ i~~ ~as in equ i l ib r ium at the starting

t emperature). The rapid nature of this measurement introduces considerable

scatter in the results , but one can see in Fig. 3 that the activation energy

averages ~77 kcal/motc. This is 5Okcal/mole less than the equilibrium viscosity

activation energy ; the difference presumably being the activation energy required

to re—equi l ib ra te  the  molecular structure after a temperature change . One mig ht

expect the equ i l i b r a t i on  to involve breaking Se—Se bonds in order  to change the

average Se chain len , , or r ing c s u c en t rat ion .14 I t  is g rat i fy i n g  to n o t e

tha t  our measured va lue  ( -50 kc al fmole)  is reasonab ly close to the energy of such

a bond (44—50 k c al/m ol c) ) 5

Af te r  a temperature  change , the  r e l axa t i on  of the c reep rate toward I t s

equil ibrium value is clearly not a simp le exp onent ia l . decay (F ig .  4 ) .  That is

not unusual ; simple relaxations are never observed in compl ica ted  systems such

as polymers .’6 Howe ver , for an adequate fit , i t is no t necessa ry to Invoke a

spectrum of relaxation times , as is customary in such cases. One can achieve a

good fit with a much simpler expression (Fig. 4) b y supposing that  the relaxation

rate, lit , is proportiOnal to the creep r ate , R. Thus , a sample initiall y in a

- ~~~-- - ~~~~~~~~~ . ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—-~~
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non—equilibrium state , will relax toward equilibrium in the following manner:

R(t) l/T(R)[R(t)_R
e] (1)

where Re is the steady state creep rate, and l/T(R) is the instantaneous relaxation

rate. The simplest assumption (which turns out to be not quite true) is that

l/t(R) = aR. Then one has:

ft = 
~
aR(R

~
Re

) .  (2)

The solution to this differential equation is relatively simple:

R(t) = R
i
R /  [K

1 
— (R

1
—R )exp (—aR t)) (3)

where R(t) = the time dependent creep rate, Ri 
= the initial creep rate, Re 

= the

equilibrium creep rate, and a = the relaxation rate/creep rate. We have measured

the time dependence of tile creep rate when approaching equilibrium from both

above and below the equilibrium temperature (see Fig. 5) and can fit the data

well using R~. Rf~ and a as free parameters. Plotting them as functions of tempera-

ture (Figs. 2,3, and 6) we found smooth curves, indicating that our fit was not

a fortuitous result of the uncertainties in our data. We also found that a had

a very definite temperature dependence (Fig. 6); it changes by m ore than a factor

of 5 over our experimental range . The signi ficance of this variation in a is

uncertain. From a very simple point of view the relaxation t ime is determined by

p 
the number of molecular displacements needed to equilibrate a s t ructure divided

by the rate of these displacements , while the viscosity is determined primarily

by the rate of molecular displacements. Therefore the ratio , a , is simply pro—
I

portional to the number of displacements needed for equilibration, and should be

determined by the structure of the molecule and its environment — smaller molecules

equilibrating more rapidly than larger ones and la~rge molecules surrounded by

small ones relaxing more rapidly than those entangled in many other large ones.

For both reasons the observed temperature dependence of a suggests that as one

lowers the temperature, the equilibrium structure of amorphous selenium changes

in favor of rings at the expense of long chains.

- 
__ ._i~- 

.—. —
~
—-‘-— -- - ~1_~__~_ -~~4



__________ ________

- t) - 
~

—--

~

-.-.

TV. INFRARED SPECTRA RESULTS

The far infrared spectrum is shown in Fig. 7. As stated In the experimental

section , the films were evaporated onto a cold substrate and kept cold and dark

until use to preserve any structural differences. After several scans, they were

heated in water to 50 to 70° C for 15 m m .  This is well above T , and from theg
creep da ta, considerably longer than needed for equilibration . The annealed

samp le ’s spectrum is virtually the same as the as—prepared sample ’s.

The invariance of Se’s far infrared optical spectra has been demonstrated

17previously with samp les quenched from di f ferent  melt temperatures. The Raman

spec trum has been shown also to be independent of sample preparation techniques

for both melt—quenched and evaporated samples.
18 

Taken together , these results

strongly sugges t that the molecules making up amorphous Se in tera ct too strong ly

to be able to identify an absorption line with a particular species as had been

suggested for Se.
19

V. HEAT CAPACITY RESULTS

Another way to investigate relaxation rates in selenium is to look at its

heat capacit y as a function of thermal history in the neighborhood of the glass

transition temperature , T
g~

20’21 
A typical heat capacity scan for Se at T

g 
is

shown in FIg. 8. At 2.5°/nu n, the heat capacity increases by 50% over a range of

only “~,lO°K at 3l0°K. In spite of this discontinuous appearance , the glass transi—

t ion is , of course , not a thermodynamic transition and its presence does not imply

a discontinuity in a material’s equilibrium properties.
22 

One can demonstrate

that the step is a direct consequence of a glass’s temperature dependent structural

21,23
relaxation rates. We have devised a simple iterative equation which keeps

track of the excess enthalpy contained in a sample as it is scanned in temperature:

- - — —  
—~—- .----.- . --~~~- - -  .
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= 

C
coflfig AT + 

I C confi g AT + AH
1J 

exp [-At/T(t) ] (4)

where AH is the excess enthalpy at the end of a step of time At and the tempera-

ture change AT. C is the heat capacity associated with the structural degreesconfig
of freedom; these degrees of freedom have a relaxation time r (T). Depending on

one ’s sophistication , the structural relaxation time can be simply described
24

by:

T = exp(a + b/(T—T )] (5)

or one can improve the model by adding an intermediate step to account for the

finite relaxation rate of -r , as discussed in the viscosity section.

Then the heat removed from the sample at each step is given by the change

in the excess enthalpy (All — AH 1
) plus the change in the equilibrium enthalpy

C AT; the observed heat capacity is:equil

C = C  + (AH — A H )/AT (6)
obs equil n—i n

If one measures Tg as a function of scan rate (we defined Tg as the tempera—

ture at which we measured half of the structural heat capacity) , one can invert

this process and , by t r ial and err or , determine the relaxation time as a function of

temperature. Using the experimental data in Table I, we go t f i ts of the hea t

capacity curves as shown by the dashed line in Fig. 8 and the relaxation times

indica ted by solid dots in Fig. 9. By reducing the isostructural activation

energy to 55.6 kcal/mole , we could slightly improve the match with the experi—

mental curve (the dotted line in Fig. 8). For a more detailed agreement one can

use the equations formulated by De l3olt ~~ al~~ which make use of a spectrum of

relaxation times. We have not tried to use their equations to calculate relaxation

t imes, as our simp le equations produce reasonable fits to experiment. Note that

even though the scan rates spanned 0.3 to 20°/mm ., the range of the da ta was

limited to about 10°C by the very rapid change of T with temperature .

_______________________________ ___________  ~~~~ i--
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Table I

Selenium glass transition tempera ture , T
g~ 

vs. scan rate. T
g 

is taken to be

the tempera ture at which the observed hea t capacity is halfway between the

ex trapola ted glass and liquid values. The relaxation time at those temperatures

was determined by numerically simulating the heat capacity as decribed in the

heat capac ity section , and adjusting T(T) until the calculated T
g 

matched

experimental T
g 

to ~ .2K , then calculating TCJ~~) .

Scan rate T (K) T(Tg)(min)
(K/mrmin) g

20 314.6 .14

10 313.1 .25

5 311.4 .69

2 .5  310.1 1.0

1.25 309.2 2 . 3

.625 307.8 4 . 4

.3125 307.0 6.8

i
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One can extend the data to lower temperatures using the procedure outlined

in Fig. 10. Starting at some temperature T
1
>T

g~ 
with the sample in thermal

equilibrium, one cools to T
A
<T and holds it there for a time t

A~ 
As it cooled

below T
g~ 

the molecular structure was nearly immobilized, so that when one reached

T
A. 

the structure was not in equilibrium and had an excess enthalpy which, during

the annealing time, slowly relaxes out. The heat is being released so slowly

that it is very hard to detect. However, when the sample is warmed above T
g~

it returns to thermal equilibrium, and that heat has to be replaced . As a result,

an endothermic relaxation peak is observed at T whose area is equal to the energy
g

lost during the annealing. When this area is recorded (minus the area of the small

peak observed for t
A 

= 0) as a function of tA~ 
one can determine a relaxation curve

for T . The low temperature limit on this method is determined solely by the
A

experimenter ’s patience. In ou r case , we went down to 294° K by annealing for periods

up to 3 days. The curves are shown in Fig. 12; they have been normalized by the
25

enthalpy the sample would lose if it had comp letely equilibrated at TA . The curves

are clearly not the result of a single relaxation time; the form of that relaxation

is indicated by the dotted line in Fig. 10. The curves even look smeared out

compared to the form resulting from the relaxation proposed in the viscosity section

(the dashed line in Fig. 12). It was calculated for TA 300°K; the initial

- 
relaxation rate was estimated from the data on Fig. 10. Clearly these curves

reflect a wide spectrum of relaxation times; if one models the curve with a

Gaussian in the log of the relaxation times , one f inds a good match fo r a half

width of .7 (i.e., it spans a factor of 5 in the relaxation times).

We have taken the 50% relaxation times from these curves and plotted them

(the x’s) with the other relaxation times in Fig. 9. The agreement is very

satisfying. 
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In a final set of samp les , we used measurements of T to look for non—

equilibrium molecular structures. Since we produced our samples by vacuum

evaporation , the concentration of shorter chains and rings should be considerably

enhanced . However, if the substrates were too warm , the samples could have
4

annealed to an equilibrium structure before any measurements were made . There-

fore we tried a series of evaporations onto cooled substrates. Since such

non-equilibrium structures might be very active, they were handled with great

caution; they were removed from the substrate in ice water , stored in dry

ice, and , as far as practicable , were not exposed to light. The resulting heat

capacities are shown in Fig. 12; one can see two significant differences from

the curve for the annealed sample (the dashed line): 1) The glass transition

temperature is considerably lower for the samples from the colder substrates.

For the selenium laid down on the coldest substrite It is reduced about lO°K

to 305°K. In Fig. 12, we see that the temperature corresponds to a T of %30

m m .  in equilibrated Se, whereas T
g 

occurs at a T of ~ .l5 m m .  The viscosity

in this sample is ~2OO X lower than in equ_librated samples. 2) Immediately

after the relaxation peak is a broad exothermic peak which is never seen in

quenched samples annealed at any temperature. Since it partly overlies the

relaxation peak, it is impossible to measure the energy involved .

If the sample is either exposed to light (at T’273°K), or thermally

annealed (see Fig. 13) T
g 

increases in temperature and the exothermic peak 1
decreases in area; after a sufficient amount of annealing (one s -an all the

way through the exothermic peak, to 350°K is sufficient), the glass transi t ion

looks identical to that of an equilibrated sample made by any other method .

Clearly we are producing, and freezing in , a molecular conf igura t ion

of low viscosity and some photoactivity. It is unstable and reduces exothermically

to the equilibrium configuration at a rate limited only b’.’ the speed of molecular

L. -— - - .~~~~~~ -- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~ . . __________________
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movements. It may be that this is primarily a ring glass. However , as noted

in the IR spectra section , there was no significant difference In absorption

between freshly evaporated and equilibrated samples. If that spectrum is indic—

ative of the molecular species present, then it must be concluded tha t we have

not increased the concentration of the rings; we have only produced a glass

consisting of relatively short and/or poorly packed chains.

In any case , the nature of the relaxation of this structure into the

equilibrium structure could be very informative if the experimental diff I—

eulties of handling it can be surmounted.

VI. DISCUSSION

The FIR absorption spectra showed only that it is not a fruitful tech-

nique to use as a probe of the molecular structure of condensed Se. Pre—

sumably the molecules interact too strongly to consider them as independent

rings and chains with known vibrational modes. Recently Gorman and Solin’8

have claimed some success with a FIR Ramam setup ; using the polarized and

depolarized Raman spectrum together , they can single out a ring mode at

112 cm 1
. It might be fruitful to pursue that method further to see if that

mode’s rela tive intensity is a function of sample preparation technique or

annealing time.

Our other experiments cannot elucidate the exact molecular composition

of selenium , but they do reveal some interesting behavior which is consistent

with an amorphous selenium consisting of a mixture of rings and chains. Clearly,

from our heat capacity data, an evaporated sample initially has a struc ture

very differen: from that of a melt—quenched or annealed sample. The evaporated

sample had a viscosity at least 200x lower than the annealed samples. Since

the viscosity scales faster than linearly wi th chain leng th ,26 
that corresponds

_______  . -~~ .-- —-—-——~~~~ —-- ~~~J~~ iL ~~~~~~~~~~~~~~ 
--
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to a drastic reduction in polymerization by a factor of 5 to a chain length

of l0~ atoms (if one takes an estimated equilibrium chain length
27 of 106) .

Therefore, these samples consist of shorter chains (and/or a higher concen-

tration of rings). In spite of this structural difference , it appears that

these samples readily anneal to an equilibrium state indistinguishable from

equilibrated melt—quenched samples at temperatures as low as 25°C (about 20°

below T
g
)~ It can only be concluded that one anneals to a unique equilibrium

state, and tha t, therefore , the molecular species can readily iEiterconveit

during annealing .

In addi tion , the observations (1) that the activation energy for the

equilibrium viscosity is larger than that for the isostructural viscosity

by about the strength of a Se—Se bond and (2) that the ratio of the relaxa-

tion time to viscosity is not a constant , suggests that the molecular struc—

ture is a func tion of temperature , and that the relaxation observed is pri—

man ly a result of the molecular species interconverting as they relax to
I

their equilibrium concentrations .

Finally,  since there appears to be no discontinuity in the elastic

proper ties of this equil ibrium state, one can rule out a sharp ring—chain

transition analogous to that in sulfur above 25°C. 28 Ra ther , the smooth

decrease in a with decreasing T suggests a gradual increase in ring con—

cen tra tions as suggested previously .29

The form of the relaxation proposed here is quite successful at

modeling the viscous relaxation , and relaxa tion times calcula ted independ en t ly

from creep ra te and T
g 

da ta agree reasonably well. In addition , it reproduces

the general behavior of the heat capacity curves and thermal relaxation

curves better than a simp le exponential relaxation. However, in de ta il the

experimen tal and predic ted heat capacity curves do not match very well at all;
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it is clear that there exist a wide range of relaxation times for the thermal

relaxations , which are not apparent in the viscous relaxations. p

This behavior is qualitatively consistent with a ring—chain model of

selenium. It is reasonable to suppose that rings and chains have different

relaxation rates and thermal relaxation measurements would show an appropri-

ately weighted mixture of the two rates. However, it is only the long

molecules which determine the viscosity and so the viscous relaxation measure-

ments would show only the single time constant characteristic of long chains.
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Schematic drawing of a) a selenium creep sample and b) a balance modified for measurinq
creep. The sample is clamped on the left hand side of the balance . The narrow part is
inserted in an oil filled slot in a temperature controlled Af block. From the right
hand side hangs a dashpot to damp vibrations, a tray for weights , usually 40q, and an
iron slug which is surrounded by a linear voltage displacement transducer attached to
the frame. The transducer is mounted on a motor drive translation stage so it can be
peri~di’al1y repositioned when its output drives the recorder pen offscale.
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